

FULL PAPER

© Springer-Verlag 1999

Molecular Modeling Study of the $PtCl_2$ Complexes of Unsaturated S_2O_{n+1} -Coronands: Dynamic Simulations and Investigation of the Ring Interconversion

Manuela Grotjahn¹, Norbert Jäger¹, Hans-Joachim Drexler², Hans-Jürgen Holdt², and Erich Kleinpeter¹

¹Institut für Organische Chemie und Strukturanalytik, Universität Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany. E-mail: manuela@serv.chem.uni-potsdam.de

²Fachbereich Chemie, Universität Rostock, Buchbinderstr. 9, D-18051 Rostock, Germany

Received: 31 August 1998/ Accepted: 9 March 1999/ Published: 29 March 1999

Abstract Maleonitrile-dithiacrown ethers mn- $12S_2O_2$ - mn- $21S_2O_5$ (mn = maleonitrile) are preorganized S_2O_{n+1} -coronands (n = 1 – 4) which force B, AB and A class metal ions into mixed S/O coordination spheres. Moreover, they form chelate complexes with MX₂ salts (M = Pd, Pt; X = Cl, Br), which were studied in this paper. The structures of mn- S_2O_{n+1} and [PtCl₂(mn- S_2O_{n+1})] (n = 2, 3) were investigated theoretically by empirical and semiempirical methods using SYBYL (TRIPOS force field) and MSI/DISCOVER97 (ESFF force field). mn- $12S_2O_2$ was investigated experimentally by X-ray analysis and 1D and 2D NMR spectroscopy in solution and the complex formation was studied by ¹H, ¹³C and ¹⁹⁵Pt NMR titration experiments, respectively. S-inversion was also investigated in order to determine the ring corresponding interconversional barriers. Different orientations of the macrocyclic ring system mn- $18S_2O_4$ and of its transition states are shown.

Keywords Thiacrown ether, NMR, Pt(II) complexes, Molecular dynamic simulations, Ring interconversion

Introduction

Thiacrown ethers having a mixed donor set of sulphur and oxygen heteroatoms differ in their metal binding properties from their purely sulphur or oxygen relatives [1, 2]. Maleonitrile-dithiacrown ethers mn- $12S_2O_2 - mn-21S_2O_5$ (mn = maleonitrile) (*cf.* Figure 1) (e. g. mn- $18S_2O_4 = 1,4,7,10$ -Tetraoxa-13,16-dithiacyclooctadec-14-ene-14,15-dicarbonitrile) are preorganized S_2O_{n+1} -coronands (n = 1 – 3) which

force B, AB and A class metal ions into mixed S/O coordination spheres [3, 4]. Moreover, they form chelate complexes with MX_2 salts (M = Pd, Pt; X = Cl, Br), which were studied in this paper.

It is the major objective of this paper to examine the molecular dynamics of both the ligands $mn-S_2O_{n+1}$ (n = 2, 3) and its Pt^{II} complexes. S-inversion has also been investigated in order to determine the corresponding ring interconversional barriers.

Correspondence to: M. Grotjahn

	SCH ₂ CH ₂ O	SCH ₂ CH ₂ O	OCH ₂ CH ₂ O	solvent
mn-12S ₂ O ₂ mn-15S ₂ O ₃ mn-18S ₂ O ₄	263 / 51.5 173 / 32.7	263 / 51.7 173 / 33.6 _	253 / 51.4 _ _	CD ₂ Cl ₂ (F.p95°C) CD ₂ Cl ₂ /CCl ₂ FH (10 : 90) (F.p135°C) CD ₂ Cl ₂ (F.p95°C)

Table 1 Coalescence temperatures (K) / free energy of activation (kJ/mol) of $mn-S_2O_{n+1}$

Methods

Molecular modeling studies

Molecular mechanics The structures of $mn-S_2O_{n+1}$ and $[PtCl_2(mn-S_2O_{n+1})]$ (n = 2, 3) were investigated theoretically. The molecular dynamic simulations (NVT statistical ensemble) of the ligands and its Pt^{II} complexes were performed using the program MSI/DISCOVER97 [5] (ESFF force field [6]). The ESFF has been proved to reproduce structures of metal complexes with good accuracy. It is able to deal with a broad variety of metal centres without any extensive parameterisation [7].

The nonbonded interactions (long-range Coulomb and van der Waals forces) were pairwise calculated without any cutoff. Energy minimisations were performed until the absolute value of the largest partial derivatives of the energy with respect to the coordinates was below 0.001 kcal/mol/Å. Steepest descent and conjugated gradient (Polak-Ribiere scheme) methods, quasi-Newton-Raphson algorithm in combination with the BFGS update scheme were used [8]. The MD runs were executed with time steps of 1 fs. Each MD run was carried out up to 510 ps at different temperatures (T = 300, 373, 500 K) in order to explore the conformational space efficiently. During the first 10 ps the system was equilibrated. For data sampling the coordinates were saved every ps. After the MD simulation each of the saved structures was used as starting geometry for a subsequent ESFF energy minimisation.

Further, the flexibility of the ligands (energy hypersurface) was studied by the Grid search algorithm of SYBYL [9] (TRIPOS force field [10]). The step width of 10° about all

Figure 1 Scheme of the Maleonitrile-dithiacrown ethers mn- S_2O_{n+1} (n = 1 - 3)

rotatory bonds (OCCO, SCCO) was used. For nonbonded interactions, described by van der Waals forces and long range Coulomb interactions, an atom-based cut-off at 8 Å was imposed. Atomic charges were evaluated by the Gasteiger Marsili scheme [11].

Grid search is useful for a systematical search of the whole conformational space.

Semiempirical calculations The heats of formation and the transition states were calculated semiempirically using the program MOPAC [12] (PM3 [13]).

The calculations were performed on a Silicon Graphics IRIS-INDIGO XS24 and IBM RS6000.

NMR spectroscopy mn-12S₂O₂ was investigated experimentally by X-ray analysis and 1D, 2D NMR spectroscopy in solution; furthermore, the complex formation was studied by ¹H, ¹³C and ¹⁹⁵Pt NMR titration experiments. For running the NMR spectra an ARX 300 (Bruker) was used. All samples were dissolved in CD₃NO₂ or, in the case of low-temperature measurements, in CD₂Cl₂ or CD₂Cl₂/CCl₂FH (10 : 90). The ¹H, ¹³C and ¹⁹⁵Pt NMR spectra were recorded at 300.13, 74.47 and 64.52 MHz in 5 mm probe tube. ¹H and ¹³C: 30° pulse, 2 s repetition time, 32 K data points; ¹⁹⁵Pt: 0.5 s repetition time. For the H,H-COSY, HMQC and the HMBC 2D experiments, the standard Bruker software was employed.

Results and discussion

Dynamic NMR spectroscopy

The ¹H NMR spectra of the uncomplexed macrocycles indicate that these compounds are still flexible (broad signals) at room temperature. The corresponding Pt complexes show rather complex ¹H NMR spectra - coalescence phenomena could not be observed.

At lower temperatures coalescence phenomena of mn- S_2O_{n+1} were observed in the ¹H NMR spectra. The coalescence temperatures of mn- $15S_2O_3$ (Table 1) (*cf.* mn- $12S_2O_2$ [3]) could be measured by temperature-dependent ¹H NMR spectra and therefrom the interconversional barriers calculated. The determination of the free energy of activation of mn- $18S_2O_4$ was not possible, because the experimental accessible temperature limit (150 K) of the NMR spectrometer

 Table 2
 Comparison of some
 selected bond angles and bond distances of [PtCl₂(mn- $15S_2O_2$ as studied by X-ray analysis and ESFF calculations (cf. Fig. 2a)

bond distance (Å)				bond angle (°)	
	X-ray	ESFF		X-ray	ESFF
PtS3	2.26	2.36	C1C2S3	120.0	121.1
PtCl14	2.31	2.30	S3PtCl14	89.3	92.8
C1C2	1.34	1.34	C2S3C3	101.0	99.8
S3C3	1.85	1.83	S3C3C4	110.5	115.5
C3C4	1.51	1.54	C3C4O4	110.9	110.5
C4O4	1.40	1.42	C4O4C5	116.6	115.3
O4C5	1.46	1.43	O4C5C6	116.0	115.5
C5C6	1.44	1.54	C5C6O6	112.6	112.2
C6O6	1.39	1.43	C6O6C7	114.7	114.9

was reached without freezing out the preferred conformations.

Molecular modeling studies

Molecular mechanics In order to investigate theoretically the dynamic process, especially the S inversion of the Pt^{II} complexed $mn-S_2O_{n+1}$ (n = 2, 3) was firstly studied, rather than the whole ring interconversion.

Therefore, molecular dynamic simulations at 300 (~ room temperature), 373 (high temperature limit of the NMR spectrometer) and 500 K were carried out but also Grid search calculations of the ligands $mn-S_2O_{n+1}$ and its Pt^{II} complexes

were performed. The coordinates of the X-ray analysis were used as starting conformations [14, 15]. As a result different ground state conformations both for $mn-S_2O_{n+1}$ (n = 2, 3) and its Pt^{II} complexes were obtained.

The five membered ring connectivity (PtS10C1C2S3, cf. Fig. 2a) does not change during the dynamic simulations. Nevertheless, the sulphur inversion still readily can take place, warranting the high flexibility of the macrocyclic ring system. The sulphur inversion were observed at 500 K for $[PtCl_2(mn-15S_2O_3)]$ and at 373 K for $[PtCl_2(mn-18S_2O_4)]$.

The lowest energy conformations of the complexes $[PtCl_2(mn-15S_2O_3)]$ and $[PtCl_2(mn-18S_2O_4)]$ found by MD simulations (ESFF) and subsequent energy minimisation are

 $[PtCl_2(mn-15S_2O_3)]$ found by MD simulation and subsequent ESFF energy minimisation (For a better illustration the structure is available as PDB file)

Figure 2b The lowest energy conformation of $[PtCl_2(mn-18S_2O_4)]$ found by MD simulation and subsequent ESFF energy minimisation (For a better illustration the structure is available as PDB file)

Table 3 ^{13}C chemical shifts of $mn \cdot 12S_2O_2$ and $[PtCl_2(mn \cdot 12S_2O_2)]$ in CD_3NO_2		C=C	SCH ₂	SCH ₂ CH ₂ O	OCH ₂ CH ₂ O	C≡N
	ligand complex	127.19 131.34	37.16 43.60	71.46 68.35	69.67 68.87	115.43 111.28

shown in Fig. 2. The S atoms point out of the ring, the exodentate orientation of the S atoms proved to be preferred.

For $[PtCl_2(mn-15S_2O_3)]$ a rmsd value of 0.34 Å between crystal structure and ESFF result (energy minima) was achieved. Some characteristic X-ray values of selected bond angles and bond distances are compared with theoretically obtained values (*cf.* Tab. 2). In contrast to the X-ray analysis where the cycle PtS10C1C2S3 (Figure 2a) is nearly planar, the ESFF calculation yielded a folded cycle (torsional angle of C2S3PtS10 -1.5° (X-ray) and 22.4° (ESFF)).

Semiempirical calculations The conformations of the ligands obtained by molecular dynamic simulations and Grid search calculations were optimised by PM3 energy minimisation and used as starting conformations for the semiempirical investigations of the transition states.

The transition state algorithm was employed as followed: first a SADDLE [16] calculation was carried out. Then, the conformation obtained was optimised by the TS search (Eigenvector Following, recalc = 5, dmax = 0.05) [17]. Finally, the force constants were calculated in order to characterise the transition state. The saddle points of first order are characterised by only one negative force constant.

The localization of the TS was very difficult because simultaneous changes of more than one dihedral angle were necessary.

Figure 3a Calculated dihedral angles (SCCO, OCCO) of $mn-18S_2O_4$ of the reactant, transition state and product (for the starred (*) dihedral angle CCO5C a negative force constant was obtained) (PM3)

Figure 3b Structures of reactant, transition state and product of $mn-18S_2O_4$ according to Figure 3a

Transition states for the larger ring mn- $18S_2O_4$ could be obtained. The interconversion between different orientations of this macrocyclic ring system with respect to the torsional angles CCO5C (Fig. 3) and S1CCO2 (Fig. 4) are shown schematically. The energy barriers were found to be about 5 kcal/mol (21 kJ/mol). These low barriers correspond with the high flexibility of the whole ring system.

For the smaller rings (n = 1, 2) it was not yet possible to identify a TS.

NMR spectroscopy The NMR technique is a powerful tool for studying the complexation of thiacrown ethers and transition metal ions in solution. The X-ray analysis [15] of the mn-S₂O_{n+1} complexes showed the Pt^{II} ion to be coordinated to the sulphur atoms. ¹³C NMR studies yielded the same results for the mn-S₂O_{n+1} complexes of PtCl₂ in nitromethane solution. The ligands are bound to platinum(II) *via* the thiaether S donor atoms (Table 3). Accordingly, in the ¹³C NMR spectrum of [PtCl₂(mn-12S₂O₂)] the methylene

resonances next to sulphur are shifted downfield upon complexation.

The number of ¹³C signals proved C_s symmetry to be preferred which is in agreement with the conformations found by the MD simulations (*cf.* Fig. 2).

Qualitative and quantitative information about the complexation of thiacrown ethers is readily available from the detailed study of chemical shift variations of the metal cations as a function of its concentration in the crown ether solution. In order to study the corresponding complex formation, the coronand was added to K_2PtCl_4 solutions (D₂O/DMF-d₆). The dependence of the ¹⁹⁵Pt chemical shifts ($\Delta\delta$ = δ [coronand]/[K₂PtCl₄] – δ [K₂PtCl₄]) on the [K₂PtCl₄]/[coronand] molar ratio was investigated (*cf.* Fig. 5). The exchange between the free and the complexed mn-12S₂O₂ is generally fast on the NMR time scale; averaged shifts were obtained. The $\Delta\delta$ *vs.* molar ratio [salt]/[coronand] curves show a single sharp bend when the molar ratio is approximately 1:1. Accordingly, the formation of a 1:1 complex was concluded.

Figure 4a Calculated dihedral angles (SCCO, OCCO) of $mn-18S_2O_4$ of the reactant, transition state and product (for the starred (*) dihedral angle S1CCO2 a negative force constant was obtained) (PM3)

Figure 4b Structures of reactant, transition state and product of $mn-18S_2O_4$ according to Figure 4a

Figure 5 The titration results of K_2PtCl_4 with $mn-12S_2O_2$ in DMF-d₆/D₂O solution

The ¹⁹⁵Pt resonance of $[PtCl_2(mn-12S_2O_2)]$ appears as a single line at -3779 ppm (*vs.* 0.1 M Na₂PtCl₆ (D₂O)). This is an upfield shift to related *cis*-PtCl₂S₂ complexes (δ (¹⁹⁵Pt): [PtCl₂(1,4,7-trithiocyclononane)] -3605 ppm; [PtCl₂(SMe₂)₂] -3551 ppm) [18]. The different donor atoms of the complexes ([PtCl₂(mn-12S₂O₂)]: oxygen and sulphur atoms; [PtCl₂(SMe₂)₂]: only sulphur atoms) are responsible for the chemical shift variation obtained.

Conclusions

The ¹H-NMR-spectra prove the ligands $\text{mn-S}_2\text{O}_{n+1}$ (n = 1 - 3) to be very flexible compounds. The flexibility was verifed by MD simulations and Grid search calculations.

NMR spectroscopic investigations as well as molecular mechanical calculations identify the lowest energy conformations of mn-S₂O_{n+1} and [PtCl₂(mn-S₂O_{n+1})] (n = 2, 3) to be symmetrical structures. In the Pt^{II} complexes the ligands are bound to platinum(II) *via* the thiaether S donor atoms.

Transition states for the interconversion of the dihedral angles CCO5C and S1CCO2 in mn- $18S_2O_4$ could be obtained. The ¹³C and ¹⁹⁵Pt NMR spectra are impressive indicators of the variations in the conformations of thiacrown ether during the complexation of transition metal ions.

The thiacrown ether $mn-S_2O_2$ studied forms a stable 1:1 complex with platinum cations.

Supplementary material For a better illustration the structures of the found global minima conformation of $[PtCl_2(mn-15S_2O_3)]$ and $[PtCl_2(mn-18S_2O_4)]$ are available as PDB files as listed below.

$[PtCl_2(mn-15S_2O_3)]$	0072s01.pdb
$[PtCl_2(mn-18S_2O_4)]$	0072s02.pdb

References

- Izatt, R.M.; Wu, G.; Jiang, W.; Dalley, N.K. *Inorg. Chem.* 1990, 29, 3828.
- Blake, A.J.; Reid, G.; Schröder, M. J. Chem. Soc. Chem. Comm. 1992, 1074.
- Grotjahn, M.; Drexler, H.-J.; Jäger, N.; H.-J.; Kleinpeter, E.; Holdt. J. Mol. Model. 1997, 3, 355.
- 4. Holdt, H.-J. Z. Anorg. Allg. Chem. 1998, 624, 1376.
- Discover 2.9.7. & 95.0/3.00 User Guide, October 1995. San Diego: Biosym/MSI. 1995.
- Barlow, S.; Rohl, A.L.; Shi, S.; Freeman, C.H.; O'Hare, D. J. Am. Chem. Soc. 1996, 118, 7578.
- 7. Jäger, N., Schilde, U. Struct. Chem. 1998, 9, 77.
- (a) Practical Methods of Optimization; Fletcher, R.; Wiley: New York, **1980**; (b) Fletcher, R.; Powell, M.J.D. Comput. J. **1963**, *6*, 163.
- 9. SYBYL 6.3, Tripos Assoc. St. Louis, Mo., USA, 1996.
- Clark, M.; Cramer III, R.D.; Van Opdenbosch, N. J. Comp. Chem. 1989, 10, 982.
- 11. (a) Gasteiger, J.; Marsili, M. *Tetrahedron*. **1980**, *36*, 3219;
 (b) Marsili, M.; Gasteiger, *J. Croat. Chem. Acta*. **1980**, *53*, 601; (c) Gasteiger, J.; Marsili, M. Organ. Magn. Reson. **1981**, *15*, 353.
- 12. Stewart, J.J.P. MOPAC 6.0, QCPE NO. 455.
- 13. Stewart, J.J.P. J. Comput. Chem. 1989, 10, 209.
- 14. Hartung, H.; Ahnert, A.; Schollmeyer, D.; Holdt, H.-J.; Teller, J. J. prakt. Chem. **1992**, 334, 155.
- 15. Grotjahn, M; Drexler, H.-J.; Holdt, H.-J.; Kleinpeter, E. in preparation
- Dewar, M.J.S., Healy, E.F., Stewart, J.J.P., J. Chem. Faraday Trans 2. 1984, 80, 227.
- 17. Baker, J. J. Comp. Chem. 1986, 7, 385.
- Grant, G.J. 31st International Conference on Coordination Chemistry, Vancouver 1996, Book of Abstracts. P. 127 (5P98)

J.Mol.Model. (electronic publication) – ISSN 0948–5023